

Estudiante: _____

Área:	Matemáticas	Asignatura: Matemáticas	Docente: Leonardo Prada	Guía: 05		
Grado:	noveno	Tema: sucesiones, series y progresiones	Fecha: 12 de octubre de 2015	Tiempo posible: 4 semanas		
Indicador de desempeño: desarrolla sucesiones, series y progresiones						

Soluciona problemas cotidianos con la ayuda de las diferentes sucesiones

INTRODUCCIÓN

¿Qué es una sucesión?

Una sucesión es un conjunto de cosas (normalmente números) una detrás de otra, en un cierto orden.

Sucesión:

("término", "elemento" y "miembro" significan lo mismo)

Finita o infinita

Si la sucesión sigue para siempre, es una sucesión infinita,

si no es una **sucesión finita**

Ejemplos

{1, 2, 3, 4,...} es una sucesión muy simple (y es una sucesión infinita)

{20, 25, 30, 35, ...} también es una sucesión infinita

{1, 3, 5, 7} es la sucesión de los 4 primeros números impares (y es una sucesión infinita)

{4, 3, 2, 1} va de 4 a 1 hacia atrás

{1, 2, 4, 8, 16, 32, ...} es una sucesión infinita donde vamos doblando cada término

{a, b, c, d, e} es la sucesión de las 5 primeras letras en order alfabético

{a, l, f, r, e, d, o} es la sucesión de las letras en el nombre "alfredo"

{0, 1, 0, 1, 0, 1, ...} es la sucesión que alterna 0s y 1s (sí, siguen un orden, en este caso un orden alternativo)

En orden

Cuando decimos que los términos están "en orden", ¡nosotros somos los que decimos qué orden! Podría ser adelante, atrás... o alternando... jo el que quieras!

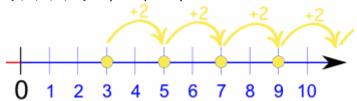
Una sucesión es muy parecida a un conjunto, pero con los términos en orden (y el mismo valor sí puede aparecer muchas veces).

Ejemplo: {0, 1, 0, 1, 0, 1, ...} es la **sucesión** que alterna 0s y 1s. El **conjunto** sería sólo {0,1}

La regla

Una sucesión sigue una regla que te dice cómo calcular el valor de cada término.

Ejemplo: la sucesión {3, 5, 7, 9, ...} empieza por 3 y salta 2 cada vez:



¡Pero la regla debería ser una fórmula!

Decir que "empieza por 3 y salta 2 cada vez" no nos dice cómo se calcula el:

- 10º término,
- 100º término, o
- n-ésimo término (donde **n** puede ser cualquier número positivo que queramos).

Así que queremos una fórmula con "n" dentro (donde n será la posición que tiene el término).

Entonces, ¿cuál sería la regla para {3, 5, 7, 9, ...}?

Primero, vemos que la sucesión sube 2 cada vez, así que podemos adivinar que la regla va a ser "2 × n". Vamos a verlo:

Probamos la regla: 2n

n	Término	Prueba
1	3	$2n = 2 \times 1 = 2$
2	5	$2n = 2 \times 2 = 4$
3	7	$2n = 2 \times 3 = 6$

Esto casi funciona... pero la regla da todo el tiempo valores 1 unidad menos de lo que debería, así que vamos a cambiarla un poco:

Probamos la regla: 2n+1

n	Término	Regla
1	3	$2\mathbf{n}+1 = 2 \times 1 + 1 = 3$
2	5	$2\mathbf{n}+1 = 2 \times 2 + 1 = 5$
3	7	$2\mathbf{n}+1=2\times3+1=7$

¡Funciona!

Así que en vez de decir "empieza por 3 y salta 2 cada vez" escribimos la regla como

La regla para {3, 5, 7, 9, ...} es: **2n+1**

Ahora, por ejemplo, podemos calcular el **término 100º**: 2 × 100 + 1 = **201**

Notación

Para que sea más fácil escribir las reglas, normalmente lo hacemos así:

Posición del término

- \mathbf{x}_{n} es el término
- n es la posición de ese término

Así que para hablar del "quinto término" sólo tienes que escribir: x₅

Entonces podemos escribir la regla para {3, 5, 7, 9, ...} en forma de ecuación, así:

$$x_n = 2n+1$$

Ahora, si queremos calcular el 10º término, podemos escribir:

$$x_{10} = 2n+1 = 2 \times 10+1 = 21$$

¿Puedes calcular el 50º término? ¿Y el 500º?

Ahora veamos algunas sucesiones especiales y sus reglas:

Tipos de sucesiones

Sucesiones aritméticas

El ejemplo que acabamos de usar, {3,5,7,9,...}, es una sucesión aritmética (o progresión aritmética), porque la diferencia entre un término y el siguiente es una constante. **Ejemplos**

1, 4, 7, 10, 13, 16, 19, 22, 25, ...

Esta sucesión tiene una diferencia de 3 entre cada dos términos.

La regla es
$$x_n = 3n-2$$

Esta sucesión tiene una diferencia de 5 entre cada dos términos.

La regla es
$$x_n = 5n-2$$

Sucesiones geométricas

En una sucesión geométrica cada término se calcula multiplicando el anterior por un número fijo. **Ejemplos:**

Esta sucesión tiene un factor 2 entre cada dos términos.

La regla es
$$x_n = 2^n$$

3, 9, 27, 81, 243, 729, 2187, ...

Esta sucesión tiene un factor 3 entre cada dos términos.

La regla es $x_n = 3^n$

4, 2, 1, 0.5, 0.25, ...

Esta sucesión tiene un factor 0.5 (un medio) entre cada dos términos.

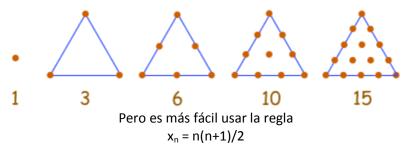
La regla es $x_n = 4 \times 2^{-n}$

Sucesiones especiales Números triangulares

1, 3, 6, 10, 15, 21, 28, 36, 45, ...

Esta sucesión se genera a partir de una pauta de puntos en un triángulo.

Añadiendo otra fila de puntos y contando el total encontramos el siguiente número de la sucesión.



Ejemplo:

- El quinto número triangular es $x_5 = 5(5+1)/2 = 15$,
- y el sexto es $x_6 = 6(6+1)/2 = 21$

Números cuadrados

1, 4, 9, 16, 25, 36, 49, 64, 81, ...

El siguiente número se calcula elevando al cuadrado su posición.

La regla es $x_n = n^2$

Números cúbicos

1, 8, 27, 64, 125, 216, 343, 512, 729, ...

El siguiente número se calcula elevando al cubo su posición.

La regla es $x_n = n^3$

Números de Fibonacci

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

El siguiente número se calcula sumando los dos que están antes de él.

El 2 se calcula sumando los dos delante de él (1+1)

El 21 se calcula sumando los dos delante de él (8+13)

La regla es
$$x_n = x_{n-1} + x_{n-2}$$

Esta regla es interesante porque depende de los valores de los términos anteriores.

Por ejemplo el 6º término se calcularía así:

$$x_6 = x_{6-1} + x_{6-2} = x_5 + x_4 = 5 + 3 = 8$$

"Sucesiones" y "series" pueden parecer la misma cosa... pero en realidad una serie es la suma de una sucesión.

Sucesión: {1,2,3,4} Serie: 1+2+3+4 = 10

Las series se suelen escribir con el símbolo Σ que significa "súmalos todos":

$$\sum_{n=1}^{4} n$$
 Esto significa "suma de 1 a 4" = 10

Esto significa "suma los cuatro primeros términos de la sucesión
$$2n+1$$
"
$$\sum_{n=1}^{4} (2n+1)$$
 Que son los cuatro primeros términos de nuestro ejemplo $\{3,5,7,9,...\}$ = $3+5+7+9=24$

1- Trabajo INDIVIDUAL: en el cuaderno se puede consignar lo más relevante de los documentos de apoyo publicados y en la carpeta se desarrollan los ejemplos y ejercicios propuestos en estas páginas,

Escriba el significado de cada uno de los conceptos escritos a continuación

Sucesión de números

Término de la sucesión

Sucesión decreciente

Sucesión creciente

Progresión Aritmética

Término General de una progresión aritmética

Suma de los n primeros términos de una progresión aritmética

Progresión Geométrica

Término General de una progresión geométrica

Suma de los n primeros términos de una progresión geométrica

Producto de los n primeros términos de una progresión geométrica

Suma de los infinitos términos de una progresión geométrica

DESARROLLAR:

- 1. Completa las sucesiones con los términos que faltan:
 - a) 3,7,11,15,___,__,....
 - b) 3, 6, 12, 24, ___, ___,
 - c) 32,16,8,4,__,....
 - d) 5,10,17,26,___,__,....
- 2. Calcula los 4 primeros términos de la sucesión de término general:
 - a) $a_n = n + 5$
 - b) $a_n = 2^{n-1}$
 - c) $a_n = \sqrt[n+1]{n+2}$
 - d) $a_n = 5n$
- 3. Calcula el término general de las sucesiones:
 - a) 1, 2, 3, 4, 5,
 - b) 1, 4, 9, 16, 25,
 - c) $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, $\frac{1}{6}$,....
 - d) $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$,
- 4. Halla el término 100 de la sucesión de término general:
 - a) $a_n = 3n + 2$
 - b) $a_n = \frac{2n+1}{n-1}$
 - c) $a_n = \frac{(-1)^n}{n+1}$
- **5.** Averigua la ley de recurrencia de cada una de las sucesiones:
 - a) 3,7,10,17,27,....
 - b) 3, 6, 12, 24, 48,
 - c) 3,7,11,15,19,....
 - d) 9, 3, 6, –3, 9,

- 6. Calcula el término general de las siguientes progresiones aritméticas.
 - a) 4,7,10,13,16,....
 - b) 1, 3, 5, 7, 9,
 - c) 7,11,15,19,23,....
 - d) 3, 4, 5, 6, 7,
- 7. Calcula el término general de las siguientes progresiones geométricas.
 - a) 4,8,16,32,64,....
 - b) 1, 3, 9, 27, 81,
 - c) 16, 8, 4, 2, 1,
 - d) $\frac{2}{3}$, $\frac{4}{9}$, $\frac{8}{27}$, $\frac{16}{81}$,
- 8. Calcula la diferencia de una progresión aritmética si se conocen:
 - a) $a_{10} = 30 \text{ y } a_1 = -6$
 - b) $a_{30} = 95 y a_{20} = 45$
- 9. Calcula la razón de una progresión geométrica si se conoce
 - a) $a_9 = 80 \text{ y } a_8 = 16$
 - b) $a_{10} = 40 \text{ y } a_7 = 5$
- **10.** Calcula el primer término de una progresión aritmética si se conoce:
 - a) $a_{20} = 34 \text{ y } d = 7$
 - b) $a_{31} = 13 \text{ y } d = 3$
- **11.** Calcula el primer término de una progresión geométrica si se conoce:
 - a) $a_7 = 320 \text{ y } r = 2$
 - b) $a_6 = 915 \text{ y } r = 3$
- 12. Calcula el número de términos de una progresión aritmética finita si el primero es 100 el último 420 y la diferencia es 4.
- **13.** Calcula la suma de los primeros 101 términos de la progresión: 1,4,7,17,20,....
- 14. Calcula la suma de los múltiplos de 3 menores de 1000 y mayores que 100
- **15.** Calcula la suma de los primeros 8 términos de la progresión: 1,2,4,8,16,....
- **16.** Calcula el producto de los primeros 8 términos de la progresión: $\frac{1}{8}$, $\frac{1}{4}$, $\frac{1}{2}$, 1, 2,
- 17. Calcula la suma de los infinitos términos de la progresión: 16,8,4,2,1,....
- 18. Calcula el producto de los primeros 10 términos de la progresión 16,8,4,2,1,....
- 19. Depositamos 6000 € al 5 % de interés compuesto anual. ¿Cuánto dinero tendré después de 3 años?
- **20.** Determina el capital que con un interés compuesto del 5% anual, produce 200 € en 4 años.
- 21. Halla el capital obtenido invirtiendo 100 € al 3 % de interés compuesto anual durante 4 años?
- **22.** Interpola 6 términos entre 1 y 10 para que formen una progresión aritmética.
- 23. Interpola 3 términos entre 1 y 16 para que formen una progresión geométrica
- 24. En un examen la primera pregunta valía dos puntos y cada una de las siguientes valía tres puntos más que la anterior. Si en total hay 50 preguntas, ¿cuántos puntos vale el examen?
- 25. El número inicial de moscas de una población es de 50 y cada tres días el número de moscas se duplica, ¿cuántas moscas habrá a los 30 días?
- **26.** Escribe la fracción generatriz de 1'2, utilizando la suma de una progresión.
- 27. En una progresión geométrica el término sexto vale 64 y el cuarto es 16. Halla el término general.
- 28. Los ángulos de un triángulo están en progresión aritmética, si el más pequeño mide 40º ¿cuál es la medida de los otros dos?

TALLER DE SUMATORIAS O SERIES

Calcula las siguientes sumatorias:

1)
$$\sum_{k=1}^{7} \frac{k(k+1)}{2} =$$

2)
$$\sum_{k=1}^{8} (3k-2) =$$

3)
$$\sum_{k=1}^{6} \frac{k}{(k+1)^2} =$$

4)
$$\sum_{k=1}^{10} \frac{k-1}{k+1} =$$

5)
$$\sum_{k=1}^{4} \frac{(-1)^k}{2^k + 1} =$$

6)
$$\sum_{k=1}^{8} \frac{(-1)^k (k^2 + 1)}{4k} =$$

Expresa como sumatoria, las siguientes sumas:

i)
$$1^2 + 2^3 + 3^4 + ... + 50^{51}$$

ii)
$$1 \cdot 1 + 2 \cdot 3 + 3 \cdot 5 + ... + 10 \cdot 19$$

iii)
$$2 + 5 + 8 + 11 + ... + 44$$

iv)
$$1 + 4 + 7 + ... + 43$$

$$v)$$
 2 + 5 + 10 + 17 + ... + 401

vi)
$$5 + 8 + 13 + 20 + ... + 904$$

Aplica las propiedades de las sumatorias y calcula:

i)
$$\sum_{k=4}^{25} \frac{4}{22} =$$

ii)
$$\sum_{k=1}^{10} \frac{7(k^3+1)}{5} =$$

iii)
$$\sum_{k=11}^{20} (k^2 + 2)(k - 2) =$$

iv)
$$\sum_{k=1}^{13} (7+k)^3 =$$

En grupo se realiza la dinámica de selección de ejercicios probables para el previo, resolviéndolos, el docente indica el día de la actividad en clase

2- Socialización

En clase se desarrollan buena parte de los ejercicios propuestos en el libro guía y con los compañeros se analiza la guía y se avanza en su solución

3- Compromisos

Desarrollar la guía propuesta en la carpeta, estudiar los archivos adjuntos en la página Web.

4- Profundización

Para profundizar en el tema visitar los documentos publicados en la página web. Además

http://www.vitutor.com/al/sucesiones/B sucContenidos.html

5- Evaluación

- Cognitiva: Se realizara el 2 Previo escrito,
- Procedimental: Presentar el desarrollo de la guía. Los apuntes de clase y el análisis de la teoría sugerida
- Actitudinal: Asistencia, presentación y buen comportamiento.

6- Recursos y bibliografía:

- Hipertextos Santillana 9º.
- Internet y Pagina Web
- Nueva Matemáticas Constructiva 9, Norma.

"La vida no es sino una continua sucesión de oportunidades para sobrevivir."

(Gabriel García Márquez)